So far, we have come across several
classes of continuous functions:
i) "constant functions". Let
$$c \in \mathbb{R}$$
, then
f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = c$
ii) "identity map".
id_R: $\mathbb{R} \to \mathbb{R}$, $x \mapsto x$
iii) "polynomials". Let $a_0, a_1, \dots, a_n \in \mathbb{R}$, then
 $p: \mathbb{R} \to \mathbb{R}$, $x \mapsto p(x) = a_1x^4, \dots + a_1x + a_0$
iv) "rational functions". Let
 $P(x) = a_1x^n + \dots + a_1x + a_0, Q(x) = b_{1x}x^4, \dots + a_1x + a_0$
iv) "rational functions". Let
 $P(x) = a_1x^n + \dots + a_1x + a_0, Q(x) = b_{1x}x^4, \dots + b_1x + b_0$
Then
 $\mathbb{R}: \mathbb{D} \to \mathbb{R}$, $x \mapsto \mathbb{R}(x) = \frac{\mathbb{R}(x)}{100}$ is continuous
an $\mathbb{D} := \{x \in \mathbb{R} \mid Q(x) \neq o\}$.
Now let's see how to define " $\mathbb{T}x$, $Exp(x)$ and $Log(x)$.
Corollary 42:
Let I c R be an interval (include cases
 $[a_1 + \infty)$, (- ∞ , b], (- ∞ , + ∞)) and let
f: $\mathbb{I} \to \mathbb{R}$ be a continuous function. Then
f(I) c R is also an interval.
Proof:
We set B := supf(I) e R \cup \{+\infty\}, A:= inff(I) e R \cup \{-\infty\}
and show that (A, B) c f(I). Let y \in \mathbb{R} be an

arbitrary number with A < Y < B According to definition of A and B, there exist numbers a, b e] s.t. $f(a) < \gamma < f(b).$ Corollary 4.1 =>] xeI with f(x)=y, therefore y E f(I). Thus (A, B) C f(I). \Rightarrow f(I) is of the form : (A_1B) , $(A_1B]$, $[A_1B)$, or $[A_1B]$ Definition 4.7: f: [a,b] -> R is called "strictly monotonically increasing", if the following holds: $a \leq x < y \leq b \implies f(x) < f(y)$ Proposition 4.6: Let DCR be an interval and f: D->R be a continuous, and strictly monotonically increasing (or decreasing) function. Then, for D' := f(D), $f: D \rightarrow D'$ is bijective, and the inverse function $f': D' \rightarrow \mathbb{R}$ is also continuous and strictly monotonically increasing (or decreasing).

Proof:
(orollary 4.2 shows that
$$D'=f(D)$$
 is
again an interval. f is injective by
Definition 4.7 and surjective by Prop. 4.5.
 \Rightarrow f is bijective and f^{-1} is strictly
monotonically increasing/decreasing
Need to show continuity:
Zet $b \in D'$ be given and $a = f^{-1}(b)$.
Suppose b is not a boundary point of D'
 \Rightarrow a is not a boundary point of D .
Without loss of generality : $[a - \varepsilon, a + \varepsilon] \subset D$
Set $b_1 := f(a - \varepsilon)$ and $b_2 := f(a + \varepsilon)$
 \Rightarrow $b_1 < b < b_2$, and $f: [a - \varepsilon, a + \varepsilon] \rightarrow [b_1, b_2]$
 $bijective$
Zet $S := min(b - b_1, b_2 - b)$. Then
 $f^{-1}((b - S, b + S)) \subset (a - \varepsilon, a + \varepsilon)$
 \Rightarrow f^{-1} is continuous in b (z-s criterion).
Proceed analogonally for beD' boundary point
 $(a = f^{-1}(b)$ is then boundary point of D)

Example 4.8:
Zet
$$f: [0,1] \cup [2,3] \rightarrow \mathbb{R}$$
 be given as follows
 $f(x) = \begin{cases} x, & 0 \le x \le 1, \\ x-1, & 2 \le x \le 3 \end{cases}$
f is continuous and monotonically increasing,
fut $f^{-1}: [0,2] \rightarrow \mathbb{R}$ is discontinuous at $y=1$.
So the requirement that the domain of
definition is an interval is essential!
Example 4.9:
i) Zet $n \in \mathbb{N}$. The power function $\mathbb{R} \Rightarrow x \mapsto x^m e \mathbb{R}$
is continuous according to Prop. 4.4, and
is monotonically increasing on $\mathbb{R}_t=(0,\infty)$.
Prop. 4.6 then implies that the nth
"root function"
 $\mathbb{R}_t \ni y \mapsto \sqrt{y} \in \mathbb{R}_t$
is continuous.
ii) Consider the function $\mathbb{E} x p: \mathbb{R} \rightarrow \mathbb{R}$
given by

$$Exp(x) := \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$
This series converges due to the quotient eviterion of Prop. 3.10, namely we have for $q_{k} := \frac{x^{k}}{k!} \neq 0$:

$$\left|\frac{a_{k+1}}{a_{k}}\right| = \frac{|x|}{k+1} \longrightarrow 0 \quad (k \to \infty)$$
This convergent series defines the "Exponential function".
It has the following property:
 $Exp(x) Exp(y) = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{\ell=0}^{\infty} \frac{y^{\ell}}{\ell!}$

$$= \sum_{k,\ell=0}^{\infty} \frac{x^{k}u^{\ell}}{k!\ell!} = \sum_{k=0}^{\infty} \left(\sum_{\ell=0}^{\infty} \frac{x^{k}u^{\ell}}{k!\ell!}\right) = (*)$$
Substitute for fixed k the index ℓ by the summation variable $n:= k+\ell$; that is substitute ℓ by $n-K$. We obtain
 $(*) = \sum_{k=0}^{\infty} \left(\sum_{l=k}^{\infty} \frac{x^{k}u^{n-k}}{k!(n+k)!}\right) = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} {n \choose k} \frac{x^{k}u^{n-k}}{n!}$

Exchange of summation order finally gives

$$\begin{aligned}
(*) &= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+k} \right) = \sum_{n=0}^{\infty} \frac{(x+q)^{n}}{n!} \\
&= (x+q)^{n} \\
\implies Exp(x) \cdot Exp(y) = Exp(x+y) \\
This is called the "addition theorem". \\
Claim: \\
Exp > 0, Exp is continuous and monotonically increasing with $Exp(R) = (0, \infty)$.
Proof:
The addition theorem gives
 $\forall x \in R : Exp(x) = (Exp(\underline{x}))^{2} \ge 0, \\
and due to
 $Exp(x) Exp(-x) = 1 \quad (\Longrightarrow Exp(x) \neq 0) \\
we have $Exp(x) > 0 \quad \forall x \in R. \\
Further, we have for $|h| < 1 \\
|Exp(h) - 1| = |\sum_{k=1}^{\infty} \frac{h^{K}}{k!}| \leq \sum_{k=1}^{\infty} |h|^{K}
\end{aligned}$$$$$$

$$= \frac{\|h\|}{\|-\|h\|} \longrightarrow 0 \quad (h \rightarrow 0),$$

so for $x = x_0 + h \rightarrow x_0$ we get
 $Exp(x) - Exp(x_0)$
$$= Exp(x_0) (Exp(h) - 1) \rightarrow 0, \quad (* *)$$

and the function Exp is continuous.
As $Exp(h) - 1 = \sum_{k=1}^{\infty} \frac{h^k}{k!} > 0$ for $h > 0,$
 $(* *)$ gives the desired monotomy:
 $Exp(x_0) < Exp(x)$ for $x_0 < x = x_0 + L.$
Finally, we apparently have
 $Exp(x) \rightarrow \infty \quad (x \rightarrow \infty);$
together with $Exp(-x) = \frac{1}{Exp(x)}$ we get
 $Exp(x) = \frac{1}{Exp(-x)} \rightarrow 0 \quad (x \rightarrow \infty)$
According to Prop. 4.6 the function
 $Exp: R \rightarrow (0, \infty)$ then has a continuous
inverse function
 $Log(Exp|_R)^{-1}: (0, \infty) \rightarrow R$

Due to

$$E \times p(Log(x) + Log(y)) = E \times p(Log(x)) \cdot E \times p(Log(y))$$

 $= \times y$
we get the "Addition theorem":
 $\forall x, y > 0: Log(xy) = Log(x) + Log(y)$